A Comparison of Algorithms for Rational / œ Approximation
نویسندگان
چکیده
Results are reported of a numerical study to compare eight algorithms for obtaining rational L approximations. The algorithms investigated are Loeb's algorithm, the linear inequality algorithm, the Osborne-Watson algorithm, the differential correction algorithms I, II and III, the Remes algorithm and Maehly's algorithm. The results of the study indicate that the Remes algorithm and the differential correction algorithm III are the most satisfactory methods to use in practice.
منابع مشابه
Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملThree Different Methods for Approximate Analysis of Bar Structures
In this paper, modified solutions were compared through utilizing three different approximate methods for bar structures. The modifications considered various changes in the initial design. To authors' best of knowledge, the studies have carried out on this matter so far are not broad enough and have considerred the simeltaneous variations of size, geometry and topology on the bar structures. I...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملاستخراج ویژگی در تصاویر ابرطیفی به کمک برازش منحنی با توابع گویا
In this paper, with due respect to the original data and based on the extraction of new features by smaller dimensions, a new feature reduction technique is proposed for Hyper-Spectral data classification. For each pixel of a Hyper-Spectral image, a specific rational function approximation is developed to fit its own spectral response curve (SRC) and the coefficients of the numerator and denomi...
متن کامل